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Abstract. We consider the real-valued Grothendieck group K0(projA)R of the cate-
gory projA of finite-dimensional projective modules over an algebra A over a field K.
Each element of the Grothendieck group determines a semistabilty condition, which was
introduced by King. Following Brüstle–Yang–Treffinger, we can associate a subset of the
Grothendieck group to each brick by using semistability conditions, and define a chamber
structure of the Grothendieck group. In this proceeding, we give our new results on the
chamber structure.
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Notation

In this proceeding, K is a field, and A is a finite-dimensional algebra over the field K.
We write projA for the category of finite-dimensional projective A-modules, and P1, . . . , Pn

for all non-isomorphic indecomposable projective A-modules. Similarly, modA denotes
the category of finite-dimensional A-modules, and S1, . . . , Sn denote all non-isomorphic
simple A-modules. We also assume that Si is the top of Pi, that is, there is a surjection
Pi → Si. For an exact or triangulated category C, the Grothendieck group of C is denoted
by K0(C).

1. Euler form

In this section, we deal with some fundamental facts on Euler form. We first recall the
following well-known facts on the Grothendieck groups of projA and modA.

Proposition 1. The following assertions hold.

(1) The family (Pi)
n
i=1 is a Z-basis of K0(projA) and K0(K

b(projA)).
(2) The family (Si)

n
i=1 is a Z-basis of K0(modA) and K0(D

b(modA)).

For these two Grothendieck groups, we have a bilinear-form called Euler form.

Definition 2. We define Euler form ⟨?, ?⟩ : K0(projA)×K0(modA) → Z by

⟨T,X⟩ :=
∑
k∈Z

(−1)k dimK HomDb(modA)(T,X[k])

for T ∈ Kb(projA) and X ∈ Db(modA).
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The families (Pi)
n
i=1 and (Si)

n
i=1 give dual bases with respect to Euler form.

Proposition 3. The families (Pi)
n
i=1 and (Si)

n
i=1 satisfy

⟨Pi, Sj⟩ =

{
dimK EndA(Sj) (i = j)

0 (i ̸= j)

for i, j ∈ {1, . . . , n}.

We can find other dual bases by using

• (2-term) silting objects in Kb(projA), and
• (2-term) simple-minded collections in Db(modA).

See [10, 5, 2] for the definitions of these two notions. We write (2-)siltA for the set of
isoclasses of basic (2-term) silting objects in Kb(projA), and similarly, (2-)smcA denotes
the set of (2-term) simple-minded collections in Db(modA). On these notions, Koenig–
Yang [10] and Brüstle–Yang [5] obtained the next results.

Proposition 4. We have the following bijections.

(1) [10, Theorem 6.1] There exists a bijection siltA → smcA sending each silting object
T to the set of isoclasses of simple objects in the abelian category

T [̸= 0]⊥ := {X ∈ Db(modA) | HomDb(modA)(T [k], X)}.

(2) [5, Corollary 4.3] The bijection in (1) is restricted to a bijection 2-siltA → 2-smcA.

We can use the bijection in (1) to construct dual bases. By [10, Lemma 5.3], we have
the following property (see also [2, Theorem 3.17]).

Proposition 5. Let T ∈ siltA correspond to X ∈ smcA. Then, there exist families
(Ti)

n
i=1 and (Xi)

n
i=1 satisfying the following conditions:

• T =
⊕n

i=1 Ti,
• X = {Xi}ni=1, and
• (Ti)

n
i=1 and (Xi)

n
i=1 give dual bases with respect to Euler form; more precisely,

⟨Ti, Xj⟩ =

{
dimK EndDb(modA)(Xj) (i = j)

0 (i ̸= j)
.

Therefore, for each T ∈ 2-siltA sent to X ∈ 2-smcA, we take families (Ti)
n
i=1 and

(Xi)
n
i=1 satisfying the three conditions above. We assume this setting in the rest of this

proceeding.

2. Cones of silting objects

Now, we consider the real-valued Grothendieck group K0(projA)R := K0(projA)⊗Z R,
which is naturally identified with the n-dimensional Euclidean space Rn by

n∑
i=1

gi[Pi] 7→ (g1, g2, . . . , gn).



For each object U =
⊕m

i=1 Ui ∈ Kb(projA) with Ui indecomposable, we define a cone
C(U) in the Eucliedan space K0(projA)R by

C(U) :=

{
m∑
i=1

ai[Um] | a1, . . . , am ∈ R≥0

}
.

We will mainly consider the case that U is a 2-term silting object.
The intersection of the cones of two 2-term silting objects expresses their common direct

summands.

Proposition 6. [8, Corollary 6.7] (see also [6, 7]) Let T, T ′ ∈ 2-siltA and addT ∩addT ′ =
addU with U ∈ Kb(projA). Then, C(T ) ∩ C(T ′) = C(U).

We also have other basic properties of the cones as follows.

• The cone C(T ) has exactly n walls C(T/Ti) with i ∈ {1, . . . , n}.
• Each wall C(T/Ti) is (n− 1)-dimensional.
• Each wall C(T/Ti) corresponds to the mutation of T at Ti.
• Each wall C(T/Ti) is orthogonal to [Xi] ∈ K0(modA) with respect to Euler form.
• If T, T ′ ∈ 2-siltA are non-isomorphic, then C(T )◦∩C(T ′) ̸= ∅, where C(T )◦ is the
interior of C(T ).

Let us give an example.

Example 7. Let A be the path algebra K(1 → 2). Then, the basic 2-term silting objects
in Kb(projA) are the following five objects:

A = P1 ⊕ P2,

T = P1 ⊕ (P2 → P1),

U = P2[1]⊕ (P2 → P1),

V = P1[1]⊕ P2,

A[1] = P1[1]⊕ P2[1].

The cones of these objects are displayed as in the picture below:
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To investigate the connection between the 2-term silting objects and their cones, we
use the numerical torsion(-free) classes introduced by Baumann–Kamnitzer–Tingley [3].
We regard each θ ∈ K0(projA)R as a Z-linear form θ := ⟨θ, ?⟩ : K0(modA) → R.

Definition 8. [3, Subsection 3.1] For θ ∈ K0(projA)R, we define the numerical torsion
class T θ by

T θ := {M ∈ modA | for any quotient module N , θ(N) ≥ 0}.

Dually, the numerical torsion-free class F θ is defined by

F θ := {M ∈ modA | for any submodule L, θ(L) ≤ 0}.

The pair (T θ,F θ) is not necessarily a torsion pair in modA. It is a torsion pair if and
only if T θ ∩ F θ is {0}.
In order to explain the importance of numerical torsion(-free) classes, we recall the

following significant fact in τ -tilting theory on functorially finite torsion(-free) classes
from [1].

Remark 9. [1, Theorem 3.2] There exist bijections

2-siltA → {functorially finite torsion classes},
T 7→ TT := FacH0(T );

2-siltA → {functorially finite torsion-free classes},
T 7→ FT := SubH−1(νT ).

Moreover, (TT ,FT ) is a torsion pair in modA.

Yurikusa [11] showed that any functorially finite torsion(-free) class is realized numeri-
cally.

Proposition 10. [11, Theorem 1.3] Let T ∈ 2-siltA and θ ∈ C(T )◦. Then, T θ = TT and
F θ = FT .

In particular, the numerical torsion(-free) class is constant in the interior C(T )◦ of the
cone C(T ). Inspired by this property, we introduce an equivalence for elements in the
real-valued Grothendieck group.

Definition 11. Let θ, θ′ ∈ K0(projA)R. Then, we say that θ and θ′ are TF equivalent if
T θ = T θ′ and F θ = F θ′ . In this case, we write θ ∼ θ′. The TF equivalent class which θ
belongs is denoted by [θ].

By using the result by Yurikusa above and some of our results in [2], we can show the
following property.

Proposition 12. For each T ∈ 2-siltA, the interior C(T )◦ is a TF equivalent class.

3. Semistable subcategories and the walls for modules

In general, the cones C(T ) do not cover the real-valued Grothendieck groupK0(projA)R,
so we shall extend the observation on TF equivalent classes outside the cones in this
section. For this purpose, we use the semistability of modules introduced by King.



Definition 13. [9, Definition 1.1] For θ ∈ K0(projA)R, we define the θ-semistable subcat-
egory Wθ ⊂ modA by

Wθ := Tθ ∩ Fθ ⊂ Ker⟨θ, ?⟩.

We remark some properties which are easily deduced.

Remark 14. For θ ∈ K0(projA)R, we have the following assertions.

(1) Let θ, θ′ ∈ K0(projA)R be TF equivalent. Then, Wθ′′ is constant for the points θ′′

in the line segment [θ, θ′].
(2) (deduced from Proposition 10) Let T ∈ 2-siltA and θ ∈ C(T )◦. Then, Wθ = {0}.

The subcategory Wθ is a wide subcategory of modA. Thus, each simple object S of Wθ

is a brick, that is, EndA(S) is a divisionK-algebra. To display the semistable subcategories
on the Euclidean space, we associate a wall to each brick.

Definition 15. [4, Definition 3.2] For each brick S, we define the wall ΘS ⊂ K0(projA)R
associated to S by

ΘS := {θ ∈ K0(projA)R | S ∈ Wθ} ⊂ Ker⟨?, S⟩.

We can consider a chamber structure on the real-valued Grothendieck groupK0(projA)R
defined by the walls ΘS for bricks S. To observe the connection between the walls ΘS

and the walls of the cones C(T ), we first remark the following facts.

Remark 16. The following assertions hold.

(1) (deduced from Remark 14) For T ∈ 2-siltA and any brick S, the intersection
C(T )◦ ∩ΘS = ∅ is empty.

(2) [5, Remark 4.11] Any element X in X ∈ 2-smcA has a brick S such that X = S
or X = S[1].

Remember that we have taken families (Ti)
n
i=1 and (Xi)

n
i=1 satisfying the three condi-

tions in Proposition 5 for each T ∈ 2-siltA sent to X ∈ 2-smcA.

Proposition 17. In the setting above, let i ∈ {1, . . . , n} and take a brick S so that
Xi = S or Xi = S[1]. Then, the wall C(T/Ti) of the cone C(T ) is contained in the wall
ΘS associated to the brick S.

We remark that the wall C(T/Ti) does not coincide with ΘS in general.

Example 18. In example 7, the bricks in modA are S2, P1, S1. The walls associated to
them are

ΘS2 = R[P1], ΘP1 = R≥0([P1]− [P2]), ΘS1 = R[P2].

For example, the wall C(A/P1) = C(P2) = R≥0[P2] of the cone C(A) is contained in ΘS1 ,
but they are not equal.



4. Main result

In this section, we give our new results on the chamber strucuture given by the walls
associated to bricks.

Recall that any T ∈ 2-siltA gives a TF equivalent class C(T )◦, which is an open set
in K0(projA)R. Actually, any TF equivalent class whose interior is nonempty can be
obtained in this way.

Proposition 19. Let θ ∈ K0(projA)R, then the following conditions are equivalent.

(a) The TF equivalent class [θ] is an open set in K0(projA)R.
(b) The interior [θ]◦ of the TF equivalent class [θ] is nonempty.
(c) There exists T ∈ 2-siltA such that θ ∈ C(T )◦.

As a consequence, we have the following bijection.

Corollary 20. There exists a bijection from 2-siltA to the set of TF equivalent classes
with nonempty interiors sending T to C(T )◦.

On the other hand, we also get a criterion of TF equivalence.

Proposition 21. Let θ ̸= θ′ be distinct elements in K0(projA)R, then the following con-
ditions are equivalent.

(a) The elements θ and θ′ are TF equivalent.
(b) The θ′′-semistable subcategory Wθ′′ is constant for θ′′ ∈ [θ, θ′].
(c) There does not exist a brick S such that ΘS ∩ [θ, θ′] consists of one point.

Finally, we can state the main result of this proceeding, which says that there exist no
cones C(T ) for T ∈ 2-siltA where the walls ΘS for bricks S lie densely.

Theorem 22. As subsets of K0(projA)R,⨿
T∈2-siltA

C(T )◦ = K0(projA)R \

( ∪
S: brick

ΘS

)
.

Moreover, the left-hand side is the decomposition to the connected components.
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