THE CHAMBER STRUCTURES OF THE GROTHENDIECK GROUPS COMING FROM BRICKS

SOTA ASAI

ABSTRACT. We consider the real-valued Grothendieck group $K_0(\text{proj } A)_{\mathbb{R}}$ of the category **proj** A of finite-dimensional projective modules over an algebra A over a field K. Each element of the Grothendieck group determines a semistability condition, which was introduced by King. Following Brüstle-Yang-Treffinger, we can associate a subset of the Grothendieck group to each brick by using semistability conditions, and define a chamber structure of the Grothendieck group. In this proceeding, we give our new results on the chamber structure.

Acknowledgement

The author is a Research Fellow of Japan Society for the Promotion of Science (JSPS). This work was supported by JSPS KAKENHI Grant Number JP16J02249.

NOTATION

In this proceeding, K is a field, and A is a finite-dimensional algebra over the field K. We write **proj** A for the category of finite-dimensional projective A-modules, and P_1, \ldots, P_n for all non-isomorphic indecomposable projective A-modules. Similarly, **mod** A denotes the category of finite-dimensional A-modules, and S_1, \ldots, S_n denote all non-isomorphic simple A-modules. We also assume that S_i is the top of P_i , that is, there is a surjection $P_i \to S_i$. For an exact or triangulated category C, the Grothendieck group of C is denoted by $K_0(C)$.

1. Euler form

In this section, we deal with some fundamental facts on Euler form. We first recall the following well-known facts on the Grothendieck groups of $\operatorname{proj} A$ and $\operatorname{mod} A$.

Proposition 1. The following assertions hold.

- (1) The family $(P_i)_{i=1}^n$ is a \mathbb{Z} -basis of $K_0(\operatorname{proj} A)$ and $K_0(\mathsf{K}^{\mathrm{b}}(\operatorname{proj} A))$.
- (2) The family $(S_i)_{i=1}^n$ is a \mathbb{Z} -basis of $K_0 \pmod{A}$ and $K_0 (\mathsf{D}^{\mathsf{b}} \pmod{A})$.

For these two Grothendieck groups, we have a bilinear-form called Euler form.

Definition 2. We define Euler form $\langle ?, ? \rangle \colon K_0(\operatorname{proj} A) \times K_0(\operatorname{mod} A) \to \mathbb{Z}$ by

$$\langle T, X \rangle := \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Hom}_{\operatorname{D^b}(\operatorname{mod} A)}(T, X[k])$$

for $T \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$ and $X \in \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\,A)$.

The detailed version of this paper will be submitted for publication elsewhere.

The families $(P_i)_{i=1}^n$ and $(S_i)_{i=1}^n$ give dual bases with respect to Euler form.

Proposition 3. The families $(P_i)_{i=1}^n$ and $(S_i)_{i=1}^n$ satisfy

$$\langle P_i, S_j \rangle = \begin{cases} \dim_K \operatorname{End}_A(S_j) & (i=j) \\ 0 & (i \neq j) \end{cases}$$

for $i, j \in \{1, ..., n\}$.

We can find other dual bases by using

- (2-term) silting objects in $K^{b}(\text{proj } A)$, and
- (2-term) simple-minded collections in $D^{b}(mod A)$.

See [10, 5, 2] for the definitions of these two notions. We write (2-)silt A for the set of isoclasses of basic (2-term) silting objects in $K^{b}(\operatorname{proj} A)$, and similarly, (2-)smc A denotes the set of (2-term) simple-minded collections in $D^{b}(\operatorname{mod} A)$. On these notions, Koenig–Yang [10] and Brüstle–Yang [5] obtained the next results.

Proposition 4. We have the following bijections.

(1) [10, Theorem 6.1] There exists a bijection silt $A \to \text{smc } A$ sending each silting object T to the set of isoclasses of simple objects in the abelian category

$$T[\neq 0]^{\perp} := \{ X \in \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\,A) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\,A)}(T[k], X) \}.$$

(2) [5, Corollary 4.3] The bijection in (1) is restricted to a bijection 2-silt $A \rightarrow 2$ -smc A.

We can use the bijection in (1) to construct dual bases. By [10, Lemma 5.3], we have the following property (see also [2, Theorem 3.17]).

Proposition 5. Let $T \in \text{silt } A$ correspond to $X \in \text{smc } A$. Then, there exist families $(T_i)_{i=1}^n$ and $(X_i)_{i=1}^n$ satisfying the following conditions:

•
$$T = \bigoplus_{i=1}^{n} T_i$$
,

•
$$\mathcal{X} = \{X_i\}_{i=1}^n$$
, an

• $(T_i)_{i=1}^n$ and $(X_i)_{i=1}^n$ give dual bases with respect to Euler form; more precisely,

$$\langle T_i, X_j \rangle = \begin{cases} \dim_K \operatorname{End}_{\operatorname{D^b}(\operatorname{\mathsf{mod}} A)}(X_j) & (i=j) \\ 0 & (i\neq j) \end{cases}$$

Therefore, for each $T \in 2$ -silt A sent to $\mathcal{X} \in 2$ -smc A, we take families $(T_i)_{i=1}^n$ and $(X_i)_{i=1}^n$ satisfying the three conditions above. We assume this setting in the rest of this proceeding.

2. Cones of silting objects

Now, we consider the real-valued Grothendieck group $K_0(\operatorname{proj} A)_{\mathbb{R}} := K_0(\operatorname{proj} A) \otimes_{\mathbb{Z}} \mathbb{R}$, which is naturally identified with the *n*-dimensional Euclidean space \mathbb{R}^n by

$$\sum_{i=1}^n g_i[P_i] \mapsto (g_1, g_2, \dots, g_n).$$

For each object $U = \bigoplus_{i=1}^{m} U_i \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$ with U_i indecomposable, we define a cone C(U) in the Eucliedan space $K_0(\mathsf{proj}\,A)_{\mathbb{R}}$ by

$$C(U) := \left\{ \sum_{i=1}^m a_i[U_m] \mid a_1, \dots, a_m \in \mathbb{R}_{\geq 0} \right\}.$$

We will mainly consider the case that U is a 2-term silting object.

The intersection of the cones of two 2-term silting objects expresses their common direct summands.

Proposition 6. [8, Corollary 6.7] (see also [6, 7]) Let $T, T' \in 2$ -silt A and add $T \cap \text{add } T' = \text{add } U$ with $U \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj } A)$. Then, $C(T) \cap C(T') = C(U)$.

We also have other basic properties of the cones as follows.

- The cone C(T) has exactly n walls $C(T/T_i)$ with $i \in \{1, \ldots, n\}$.
- Each wall $C(T/T_i)$ is (n-1)-dimensional.
- Each wall $C(T/T_i)$ corresponds to the mutation of T at T_i .
- Each wall $C(T/T_i)$ is orthogonal to $[X_i] \in K_0 \pmod{A}$ with respect to Euler form.
- If $T, T' \in 2$ -silt A are non-isomorphic, then $C(T)^{\circ} \cap C(T') \neq \emptyset$, where $C(T)^{\circ}$ is the interior of C(T).

Let us give an example.

Example 7. Let A be the path algebra $K(1 \rightarrow 2)$. Then, the basic 2-term silting objects in $K^{b}(\text{proj } A)$ are the following five objects:

$$A = P_1 \oplus P_2,$$

$$T = P_1 \oplus (P_2 \to P_1),$$

$$U = P_2[1] \oplus (P_2 \to P_1)$$

$$V = P_1[1] \oplus P_2,$$

$$A[1] = P_1[1] \oplus P_2[1].$$

The cones of these objects are displayed as in the picture below:

2

To investigate the connection between the 2-term silting objects and their cones, we use the numerical torsion(-free) classes introduced by Baumann–Kamnitzer–Tingley [3]. We regard each $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ as a \mathbb{Z} -linear form $\theta := \langle \theta, ? \rangle \colon K_0(\operatorname{mod} A) \to \mathbb{R}$.

Definition 8. [3, Subsection 3.1] For $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$, we define the numerical torsion class $\overline{\mathcal{T}}_{\theta}$ by

$$\overline{\mathcal{T}}_{\theta} := \{ M \in \operatorname{\mathsf{mod}} A \mid \text{for any quotient module } N, \, \theta(N) \ge 0 \}.$$

Dually, the numerical torsion-free class $\overline{\mathcal{F}}_{\theta}$ is defined by

 $\overline{\mathcal{F}}_{\theta} := \{ M \in \operatorname{\mathsf{mod}} A \mid \text{for any submodule } L, \, \theta(L) \le 0 \}.$

The pair $(\overline{\mathcal{T}}_{\theta}, \overline{\mathcal{F}}_{\theta})$ is not necessarily a torsion pair in mod A. It is a torsion pair if and only if $\overline{\mathcal{T}}_{\theta} \cap \overline{\mathcal{F}}_{\theta}$ is $\{0\}$.

In order to explain the importance of numerical torsion(-free) classes, we recall the following significant fact in τ -tilting theory on functorially finite torsion(-free) classes from [1].

Remark 9. [1, Theorem 3.2] There exist bijections

2-silt $A \to \{$ functorially finite torsion classes $\},$ $T \mapsto \mathcal{T}_T := \mathsf{Fac} \, H^0(T);$ 2-silt $A \to \{$ functorially finite torsion-free classes $\},$ $T \mapsto \mathcal{F}_T := \mathsf{Sub} \, H^{-1}(\nu T).$

Moreover, $(\mathcal{T}_T, \mathcal{F}_T)$ is a torsion pair in mod A.

Yurikusa [11] showed that any functorially finite torsion(-free) class is realized numerically.

Proposition 10. [11, Theorem 1.3] Let $T \in 2$ -silt A and $\theta \in C(T)^{\circ}$. Then, $\overline{\mathcal{T}}_{\theta} = \mathcal{T}_{T}$ and $\overline{\mathcal{F}}_{\theta} = \mathcal{F}_{T}$.

In particular, the numerical torsion(-free) class is constant in the interior $C(T)^{\circ}$ of the cone C(T). Inspired by this property, we introduce an equivalence for elements in the real-valued Grothendieck group.

Definition 11. Let $\theta, \theta' \in K_0(\operatorname{proj} A)_{\mathbb{R}}$. Then, we say that θ and θ' are *TF* equivalent if $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_{\theta'}$ and $\overline{\mathcal{F}}_{\theta} = \overline{\mathcal{F}}_{\theta'}$. In this case, we write $\theta \sim \theta'$. The TF equivalent class which θ belongs is denoted by $[\theta]$.

By using the result by Yurikusa above and some of our results in [2], we can show the following property.

Proposition 12. For each $T \in 2$ -silt A, the interior $C(T)^{\circ}$ is a TF equivalent class.

3. Semistable subcategories and the walls for modules

In general, the cones C(T) do not cover the real-valued Grothendieck group $K_0(\operatorname{proj} A)_{\mathbb{R}}$, so we shall extend the observation on TF equivalent classes outside the cones in this section. For this purpose, we use the semistability of modules introduced by King. **Definition 13.** [9, Definition 1.1] For $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$, we define the θ -semistable subcategory $\mathcal{W}_{\theta} \subset \operatorname{mod} A$ by

$$\mathcal{W}_{\theta} := \mathcal{T}_{\theta} \cap \mathcal{F}_{\theta} \subset \mathsf{Ker} \langle \theta, ? \rangle.$$

We remark some properties which are easily deduced.

Remark 14. For $\theta \in K_0(\text{proj } A)_{\mathbb{R}}$, we have the following assertions.

- (1) Let $\theta, \theta' \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ be TF equivalent. Then, $\mathcal{W}_{\theta''}$ is constant for the points θ'' in the line segment $[\theta, \theta']$.
- (2) (deduced from Proposition 10) Let $T \in 2$ -silt A and $\theta \in C(T)^{\circ}$. Then, $\mathcal{W}_{\theta} = \{0\}$.

The subcategory \mathcal{W}_{θ} is a wide subcategory of mod A. Thus, each simple object S of \mathcal{W}_{θ} is a brick, that is, $\mathsf{End}_A(S)$ is a division K-algebra. To display the semistable subcategories on the Euclidean space, we associate a wall to each brick.

Definition 15. [4, Definition 3.2] For each brick S, we define the wall $\Theta_S \subset K_0(\operatorname{proj} A)_{\mathbb{R}}$ associated to S by

$$\Theta_S := \{ \theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid S \in \mathcal{W}_{\theta} \} \subset \operatorname{Ker}\langle ?, S \rangle.$$

We can consider a chamber structure on the real-valued Grothendieck group $K_0(\operatorname{proj} A)_{\mathbb{R}}$ defined by the walls Θ_S for bricks S. To observe the connection between the walls Θ_S and the walls of the cones C(T), we first remark the following facts.

Remark 16. The following assertions hold.

- (1) (deduced from Remark 14) For $T \in 2\text{-silt } A$ and any brick S, the intersection $C(T)^{\circ} \cap \Theta_S = \emptyset$ is empty.
- (2) [5, Remark 4.11] Any element X in $\mathcal{X} \in 2\operatorname{-smc} A$ has a brick S such that X = S or X = S[1].

Remember that we have taken families $(T_i)_{i=1}^n$ and $(X_i)_{i=1}^n$ satisfying the three conditions in Proposition 5 for each $T \in 2$ -silt A sent to $X \in 2$ -smc A.

Proposition 17. In the setting above, let $i \in \{1, ..., n\}$ and take a brick S so that $X_i = S$ or $X_i = S[1]$. Then, the wall $C(T/T_i)$ of the cone C(T) is contained in the wall Θ_S associated to the brick S.

We remark that the wall $C(T/T_i)$ does not coincide with Θ_S in general.

Example 18. In example 7, the bricks in mod A are S_2, P_1, S_1 . The walls associated to them are

$$\Theta_{S_2} = \mathbb{R}[P_1], \quad \Theta_{P_1} = \mathbb{R}_{\geq 0}([P_1] - [P_2]), \quad \Theta_{S_1} = \mathbb{R}[P_2].$$

For example, the wall $C(A/P_1) = C(P_2) = \mathbb{R}_{\geq 0}[P_2]$ of the cone C(A) is contained in Θ_{S_1} , but they are not equal.

4. Main result

In this section, we give our new results on the chamber structure given by the walls associated to bricks.

Recall that any $T \in 2$ -silt A gives a TF equivalent class $C(T)^{\circ}$, which is an open set in $K_0(\operatorname{proj} A)_{\mathbb{R}}$. Actually, any TF equivalent class whose interior is nonempty can be obtained in this way.

Proposition 19. Let $\theta \in K_0(\text{proj } A)_{\mathbb{R}}$, then the following conditions are equivalent.

- (a) The TF equivalent class $[\theta]$ is an open set in $K_0(\text{proj } A)_{\mathbb{R}}$.
- (b) The interior $[\theta]^{\circ}$ of the TF equivalent class $[\theta]$ is nonempty.
- (c) There exists $T \in 2$ -silt A such that $\theta \in C(T)^{\circ}$.

As a consequence, we have the following bijection.

Corollary 20. There exists a bijection from 2-silt A to the set of TF equivalent classes with nonempty interiors sending T to $C(T)^{\circ}$.

On the other hand, we also get a criterion of TF equivalence.

Proposition 21. Let $\theta \neq \theta'$ be distinct elements in $K_0(\text{proj } A)_{\mathbb{R}}$, then the following conditions are equivalent.

- (a) The elements θ and θ' are TF equivalent.
- (b) The θ'' -semistable subcategory $\mathcal{W}_{\theta''}$ is constant for $\theta'' \in [\theta, \theta']$.
- (c) There does not exist a brick S such that $\Theta_S \cap [\theta, \theta']$ consists of one point.

Finally, we can state the main result of this proceeding, which says that there exist no cones C(T) for $T \in 2$ -silt A where the walls Θ_S for bricks S lie densely.

Theorem 22. As subsets of $K_0(\text{proj } A)_{\mathbb{R}}$,

$$\prod_{T\in 2\text{-silt }A} C(T)^{\circ} = K_0(\operatorname{proj} A)_{\mathbb{R}} \setminus \left(\bigcup_{S: \text{ brick}} \Theta_S\right).$$

Moreover, the left-hand side is the decomposition to the connected components.

References

- [1] T. Adachi, O. Iyama, I. Reiten, τ -tilting theory, Compos. Math. 150 (2014), no. 3, 415–452.
- [2] S. Asai, Semibricks, Int. Math. Res. Not. (2018), https://doi.org/10.1093/imrn/rny150.
- [3] P. Baumann, J. Kamnitzer, P. Tingley, Affine Mirković-Vilonen polytopes, Publ. Math. Inst. Hautes Études Sci. 120 (2014), Issue 1, 113–205.
- [4] T. Brüstle, D. Smith, H. Treffinger, Wall and Chamber Structure for finite-dimensional Algebras, arXiv:1805.01880.
- [5] T. Brüstle, D. Yang, Ordered Exchange Graphs, Advances in Representation Theory of Algebras, 135–193, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013.
- [6] R. Dehy, B. Keller, On the Combinatorics of Rigid Objects in 2-Calabi-Yau Categories, Int. Math. Res. Not. (2008), https://doi.org/10.1093/imrn/rnn029.
- [7] H. Derksen, J. Fei, General presentations of algebras, Adv. Math. 278 (2015), 210–237.
- [8] L. Demonet, O. Iyama, G. Jasso, τ-Tilting Finite Algebras, Bricks, and g-Vectors, Int. Math. Res. Not. (2017), https://doi.org/10.1093/imrn/rnx135.

- [9] A. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford 45 (1994), 515–530.
- [10] S. Koenig, D. Yang, Silting Objects, Simple-Minded Collections, t-Structures and co-t-Structures for Finite-Dimensional Algebras, Doc. Math. 19 (2014), 403–438.
- [11] T. Yurikusa, Wide Subcategories are Semistable, Doc. Math. 23 (2018), 35–47.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY NAGOYA, AICHI 464-8602 JAPAN *E-mail address*: m14001v@math.nagoya-u.ac.jp